

#CLINTON DAVID SKAKUN

SIMPLE DEVELOPMENT
CONCEPTS TO MANAGING CODE

COMPLEXITY

 ###Loops

#CLINTON DAVID SKAKUN ###LOOPS

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Introduction

Welcome to Loops!, a collection of philosophies refined

over two decades of coding across various languages

and frameworks. This isn’t a textbook of strict rules;

it’s a set of guidelines rooted in experience, focused on

productivity, maintainability, and solving real-world

problems. The core idea is simple: Software develop-

ment is complex, and our job isn’t to eliminate com-

plexity but to manage it effectively.

We prioritize clarity over artificial simplicity, end-to-

end type safety, and getting things done quickly, se-

curely, and reliably. This book will challenge some

popular beliefs, advocate for pragmatism over dogma-

tism, and help you build software that lasts. And more

importantly, even though my ideas are opinionated,

feel free to completely disagree. Why? What works

great for me might just work completely the opposite

for you. ###

#CLINTON DAVID SKAKUN ###LOOPS

###Chapter 1. Manage
Complexity, Don’t Eliminate It

“Code bases are always going to become complex
once you start to change and add code.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

The urge to simplify is often misguided in software de-

velopment. The more we try to eliminate complexity

the harder we make it. Instead of aiming for a myth-

ical state of “simplicity,” we need to accept and man-

age the inherent complexity that comes with building

real-world applications. Trying to force simplicity in

every corner often creates obscurity: black boxes that

developers don’t understand, and abstractions that

leak, causing unpredictable behavior and headaches.

We believe that code can be understood, changed, and

maintained. To make that happen we need clarity.

TypeScript is a great example of this idea. TypeScript

doesn’t make our code less complex; it gives us the

tools and the clarity to manage the complexity that

comes with Javascript, as the code changes, instead of

sweeping it under the rug. It’s about creating a system

where complexity is organized, predictable, and man-

ageable rather than hidden and chaotic.

This means we prefer code that’s clear and well-struc-

tured, even if it’s not the simplest possible solution.

Clarity is more valuable than false simplicity.

“I prefer to manage complexity over
managing obscurity”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 2. Single Source
of Truth Modeling

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

At the very core of every application lies its data. These

data models must be the ultimate source of truth, dic-

tating data structure, type safety, and runtime valida-

tion. We should not rely on different places to define

our data. This eliminates errors caused by having half-

truths spread across the app. Consider the common

scenario:

You have database models, input validation schemas,

and form schemas, and if you make a change, you have

to update each and every one. This isn’t just tedious—

it’s a recipe for inconsistencies and bugs. This is the

problem we are trying to solve with our source of truth.

Our solution is simple: Embed all data-related con-

cerns directly within the model definitions. Wheth-

er it’s field lengths, data types, or validation rules, we

should declare it once, and let all other layers use that

source of truth.

This gives us a maintainable system where a single

source of truth automatically generates our type safe-

ty and runtime validation. This means that our Zod

schemas and Prisma schemas are in sync whenever

a change is done.

“Embed all data-related concerns directly
within the model definitions”

#CLINTON DAVID SKAKUN ###LOOPS

```
// Model definition
model User {

/// @zod.string.min(5).max(90)
username String
/// @zod.string().min(8).regex(...) 
password String
created Date

}

// Zod schema derived from model
const usernameChangeForm = z.object({

username: UserModelZod.shape.username
});
```


SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 3. End-to-End
Type Safety

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Types are the safety rails of our code. Without them we

are driving without a seatbelt. They keep our code con-

sistent, help us prevent errors, and enhance our pro-

ductivity. To unlock the true power of type safety, we

need to ensure that type definitions don’t get re-writ-

ten in multiple locations. Instead, we should use the

original type definition across different parts of the ap-

plication. For example in our backend and frontend.

End-to-end type safety means that our types are always

consistent, no matter where they’re being used. This

applies to different models, endpoints, or across differ-

ent environments, or between our front and backends.

Think of it like a puzzle. Each piece must fit correctly

for the whole puzzle to be complete. End-to-end type

safety ensures that each piece (type) is consistent and

fits its place. If any piece is wrong, the puzzle breaks,

and we immediately know that there is an error. This

approach greatly enhances the overall robustness and

reliability of our systems.

“The idea is to have a puzzle that breaks if one
related part breaks.”

#CLINTON DAVID SKAKUN ###LOOPS

```
// Backend endpoint return {
userMe: await db.users.get(session.id) // type 
User
}

// Frontend
let { userMe } = $props(); // User is 
automatically typed here

userMe.x = 1; // Error, x does not exist on 
User console.log(userMe.username); // Works, 
username exists on User
```


SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 4. Security by
Design

“For the most part security will be a default.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Security isn’t an afterthought; it’s a fundamental part of

the software development process. We shouldn’t rely

on developers to always remember to apply security

measures manually. Instead, we should design systems

that are secure by default, where security becomes the

status quo.

One way we do this is by using a default-deny ap-

proach. New routes and features are denied by default

until permissions are given to them. This approach

will help prevent developers from accidentally expos-

ing things they shouldn’t.

Security should be something that’s woven into the

fabric of our code. By making security a default, we

shift our mindset from “remembering security” to “de-

signing security”. This approach not only enhances se-

curity, but it also reduces errors.

“by making security a default, we shift our
mindset from “remembering security”

to “designing security””

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 5. Test After
Writing

“Write unit tests when it’s working.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

The popular practice of Test-Driven Development

(TDD) often leads to unproductive workflows. Writing

tests before writing the code assumes things about the

code that you can’t assume before you begin writing it.

The result is you are often rewriting more tests than

code. It leads to a rigid mindset and takes away from

the creative process that programming is.

Instead, we believe in writing the code first, getting it

working, and then writing the tests. Manual testing,

while writing the code, is necessary to see if your as-

sumptions are correct. Once the code works and meets

requirements, tests are written. Tests are there for

change management and to eliminate bugs that you

didn’t see during development.

We believe that our tests should be there for bug pre-

vention and make sure that we don’t break things when

we change the code in the future.

“Manual testing, while writing the code,
is necessary to see if your assumptions are

correct.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 6. Productivity
vs. Popular Belief

“We just care about productivity and
 longevity of OUR code.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

There is a wide range of popular industry practices like

Agile, TDD, and Clean code, that are often presented as

the only way. While these concepts can sound good on

paper, they often fail to take the real-world context into

account. We aren’t a multi-billion dollar company with

thousands of developers. We are trying to ship working

software and focus on productivity and longevity.

We care about speed, security, and getting code to the

customers quickly. This means we care more about re-

sults than we care about adhering to a strict set of rules

that might not apply to our context. The key is to be

pragmatic and adopt practices that actually benefit us

instead of blindly following what others do.

“The key is to be pragmatic and adopt practices
that actually benefit us instead of blindly

following what others do.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 7. Minimize
Casting, Coercion, and

Serialization

“Casting, forcing, etc. makes code harder
to change and maintain.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

One of the key goals of end-to-end type safety is to

reduce the amount of casting, coercion, and serializa-

tion that’s happening in our code. Each and every time

we cast or coerce we are adding a layer of complexity

that’s not necessary. These extra steps make the code

harder to debug, maintain, and change. It also has per-

formance implications.

Ideally, types should only morph when they pass

through serializers and deserializers. Even better is to

automate this process and make it transparent or min-

imize it completely.

This is important when dealing with APIs, databases,

and third-party libraries. For example, JSON fields in

Postgres can become a nightmare when we have to cast

and coerce Dates, BigInts, etc. That’s why serializers

like devalue that handle this problem better are pre-

ferred. These types of serializers do cost some process-

ing power, but they save you from doing extra work on

the other side.

“We want our code to have clear and
smooth data flow, not a minefield of type

transformations.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 8. Less Magic
is Better

“Whenever we can we prevent magical code.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Magical code hides details and often introduces hid-

den side effects. It forces us to learn a new framework

on top of the existing ones. This makes it hard to un-

derstand the code, and as a result, it is harder to debug.

This is why we prefer process over abstraction, and it’s

why we should be wary of “magic”.

Every time we use magical code, it is like another black

box that hides details we should know about. Why cre-

ate a complicated ORM on top of the existing ORM

when we can just write the code? Why add metadata

annotations when we can just write the code instead?

In short: Prefer clarity over magic, and understand the

code instead of hiding away details.

“Prefer clarity over magic, and understand
the code instead of hiding away details.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 9. Falling in
Love with Types

“any is a type that can be anything. It’s a bad
practice because it’s hard to know what type it is and

it can cause bugs.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

The any type is like a loophole in type safety. It can

be anything. This makes it hard to know what type a

variable actually is. If you’re using any, you’re not using

types. We should never use any unless we have no oth-

er option. This will ensure we are relying on our types

and catching bugs at compile time.

This type is also very flexible, but it forces you to per-

form type checks before using it. Unknown will remind

you to validate the type before doing anything with it.

This makes it safer than any in most situations. It’s the

perfect type when you really don’t know what type it is.

“Instead of any, consider using unknown.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 10. Validate When
in Doubt

“Static typing doesn’t mean anything if you don’t
have confidence in the types.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Static types are great for catching errors at compile

time. But, what happens if the type is not what you

think it is? We should validate types when we are not

sure what they are. In some cases we should assume our

types are wrong to prevent unexpected behavior. We

shouldn’t trust types coming from external sources.

These types include user input, API responses, JSON,

XML, YAML, etc parsing. All of these types require

a parse function that takes a string and returns a value

of the type. The act of parsing, or decoding, means we

should assume we don’t have the correct type and val-

idate before proceeding. We need to validate the data

to make sure it is correct and that all data matches the

types we expect. This improves overall safety of the

code.

“We shouldn’t trust types coming from
external sources. ”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 11. Creative Testing

“Go to crazy lengths to test things that are
mission critical.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

When it comes to mission-critical features, the ap-

proach to testing should be extensive and creative. It’s

not enough to just test the happy path. We need to be

creative and explore every possible scenario to avoid

unexpected bugs. This includes scenarios that you may

not think of at first.

For example, if we are working with a webhook from

Stripe, we should not just test it manually once and

hope that it works in production. You should try things

like multiple retries, invalid data, etc. Similarly, back-

ground processes should be tested under every situa-

tion.

We should not be thinking about different types of

tests (unit, integration, etc.) and focus on creating good

tests that provide coverage. They are all just different

forms of “tests”.

“Background processes should be tested under
every situation.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 12. Don’t Use
console.log

“Use console.debug instead of console.log.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Console.log is very vague and should not be used in

production. console.debug is much more specific and

the better choice when you want to output informa-

tion to the console. When you’re using console.debug

you’re saying you’re debugging.

The only place where console.log should exist is in ac-

cess logs. Every other place in the code should use con-

sole.debug if you want to use console logging.

In general, we should ask ourselves if we’re debugging,

tracing, or outputting as much info as possible to run

up our cloud bill. The answer isn’t always the same.

“Console.log has no clear meaning and it
doesn’t provide a lot of value.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 14. Use the Right
Tool for the Job

“All they care about is if you can get the job done,
on time to make money and give the customer what

they promised them 6 months ago.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

All languages are close enough to the metal. Modern

computers are very powerful, so you don’t need to

worry too much about what to choose. You should be

choosing what you are most comfortable with. The goal

is to focus on getting things done and making money.

No one cares if you’re a “real programmer” or a

“JavaScript developer”, what they care about is if you

can get the job done on time. And the customer just

wants the page to load. They don’t care about Rust or

Ruby.

Yes, you need to think about things like memory man-

agement, but most companies won’t ever run into

memory problems. Types matter, but some companies

hate types and don’t want to use them. Some compa-

nies can lose millions of dollars from a bug, and others

can lose $0.

The most important thing is to focus on writing good

code and solving problems, and not caring about the

language. Don’t let ego dictate what you use. Choose

the right tool for the job and be creative in finding

solutions to problems.

“The most important thing is to focus on
writing good code and solving problems,

and not caring about the language.”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 15. Know When to
Optimize

“Focus on perception, setting expectations and
experience... not benchmarks.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

With modern internet speeds, a lot of optimizations

are usually not necessary. Many companies rely on

caching with Cloudflare and other techniques to make

old websites load fast. So, how important is optimiza-

tion?

If a user expects something to happen right away and it

takes 1 second, that feels slow. If something is expected

to take 3 weeks and it only takes 3 days, that feels very

fast. This means most of your “speed” optimization is

pointless. for of vs forEach on a list of 100 entries will

make zero difference. Even if one is 100x faster.

However, if you can optimize a process that takes one

hour to 10 seconds, that’s huge. It means you are pro-

viding real value to the user. If you can show the most

interesting video clips on instagram while they’re wait-

ing, maybe they’ll want it to take longer.

“Optimization comes down to perception
and user expectation. ”

#CLINTON DAVID SKAKUN ###LOOPS

Chapter 16. Code Matters!

“Removing a column from a database shouldn’t
be a 3 day ordeal. Changing a type shouldn’t

take a week.”

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Despite everything I’ve just said, code matters. Not the

language, but the code itself. Thinking about the code,

making decisions about it, and structuring it properly

is essential for the long term growth of our application.

Removing a column from a database should never take

3 days. Changing a type shouldn’t take a week. Creat-

ing new features should be more about getting it right

instead of working around bad system design. You

should choose the right technologies, and hire people

that know how to deal with it. Then you need to decide

how much to dictate vs delegate. It takes dedication

and work. But it’s all worth it in the long run.

“If you’re struggling with code it is probably
a signal to take a second look.”

#CLINTON DAVID SKAKUN ###LOOPS

Everything I’ve learned along the way. I hope you

found it useful.

 This book is focused on my development team at De-

dupely. Instead of endless meetings or adding it to a

how-to guide, hidden away in a wiki somewhere, I de-

cided to make it fun and easy to read. I hope you enjoy

it as much as I did writing it.

A lot of passion went into writing these few pages in

this tiny book. However I’m not going to pretend this

is the end-all of software development. Not even close.

Hopefully we can re-write this book together in anoth-

er ten years with your perspectives and experiences.

There it is!

SIMPLE DEVELOPMENT CONCEPTS TO MANAGING CODE COMPLEXITY

Clinton is a software developer, entrepreneur,

and the founder of Dedupely.

He has over 20 years of experience in building

and launching software products.

Clinton David Skakun

Copyright © 2025 Clinton David Skakun

All rights reserved.
No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher or author, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

For permission requests, write to the publisher at the address below:
clintonskakun@gmail.com

Loops
Written by Clinton David Skakun

